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 Induced polarization method (IP)
o Self-potential (SP) method

Higher frequency methods (electromagnetic surveys):
 Electromagnetic induction methods
e Ground penetrating radar (GPR)
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Electromagnetic method

Electromagnetic (EM) surveying methods make use of the
response of the ground to the propagation of
electromagnetic field. This response vary according to the
conductivity of the ground (in S/m).

Primary EM fields are generated using a alternating current
In a loop wire (coil) or a natural EM source

The response of the ground is the generation of a
secondary EM field

The resultant field is detected by the alternating currents
that they induce In a receiver coil



Application

Exploration of metalliferous mineral deposits
Exploration for fossil fuels (oil, gas, coal)
Engineering/construction site investigation
Glaciology, permafrost

Geology

Archaeological investigations



Structure of the lecture

1. Equations in electromagnetic surveying
2. Survey strategies and interpretation
3. Conclusions



1. Equations In electromagnetic surveying



Maxwell equations
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B and H fields
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We can measure B, not H!

t, = 47107 (X—Sj permeability for vacuum
m

u  permeability of material
B magnetic induction field (Vs/m?)
H magnetic field strenght (A/m) 9

Example of values for .
Hematite, quartz: =1
Magnetite: 1 =5




Frequencies

1 f frequency (Hz)
w=2rf =271 — T period (s)
T @ angular velocity (rad/s)

In the field, some frequencies are considered as noise and
must be filtered out:

Light 50 Hz
CFF/SBB 16.6 Hz
3rd harmonic 150 Hz
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Basic theory: induction EM
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Basic theory: induction EM

Transmitter \

VxH-—== i PR

ot —
' ~
Ampere-Maxwell //

ke Faraday

Primary field — =
Secondary field— — __— — ™

12




time

/\ induced voltage

\rtime

Secondary current

ﬂnd field

Qime

/\ Resultant field

VRN

resultant phase lag ®

Transmitter

M

ol /
7 P ™~ Conductor
~
\/ 7~
\ N
/

Primary field —— =

—

Secondary field— — - —

®:%+¢:%+tan‘l(a)L/R)

R is the resistance of the conductor

L is the inductance of the conductor
(or its tendancy to oppose a change

in the applied field)
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Real and imaginary components
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Effect of a conductive body

:—+¢ —+tan "(wL/R)

e Large conductivity (R >0and ¢ > 7/2): ® >«

e Low conductivity (R —>wand ¢ > 0): © — 2
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Tilt-angle methods

y L

The receiving coll is turned until a null position is reached
(no-signal): the plane of the colil then lies in the direction of

the arriving field 6



Depth of penetration and skin depth

Skin depth:  depth ¢ at which the amplitude of the field
reaches 1/e of its original value a the source

\ Lo f

Depth of penetration: maximum depth z, at which a conductor
may still produce a recognizable EM
anomaly (empirical relation)
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2. Survey strategies and interpretation
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Classification of EM methods

Uniform field methods

* Magnetotelluric (MT)

* Audio-magnetotelluric (AMT)

e Very-Low Frequency (VLF-tilt, VLF-R)

e Controlled source audio-magnetotelluric (CSAMT)

Dipolar field methods
« Twin-coil or slingram systems: dipole source is used

Time-domain EM
e Transient EM (TEM)
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Magnetotelluric (MT)

* The source are fields of natural origin (magneto-telluric
fields) resulting from flows of charged particles in the
lonosphere, correlated with diurnal variations in the
geomagnetic field caused by solar emissions

* The only electrical technigue capable of penetrating to the
depths of interest to the oil industry (mapping salt domes
and anticlines)

* Freguencies range from 10> Hz to 20 kHz
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Telluric measurements
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MT measurements
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Audio-magnetotelluric (AMT)

» Use equatorial thunderstorms as sources (1 to 20 kHz).
These EM fields are called sferics. Sferics propagated
around the Earth between the ground and the ionosphere

e The very broad frequency spectrum can be filtered to select
a depth of investigation up to 1 km (AMT soundings)

 Method sensitive to noise in urban areas
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(a) geological map
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Very-Low Frequency (VLF-tilt)

e Use submarine communication waves as sources (10 to 30
kHz). The transmitters are very powerful (>1 MW).The
primary EM field is planar and horizontal

« The depth of investigation mainly depends on the
conductivity of rocks and the transmitter chosen (from
10m to 100m)

« Disadvantages: transmission frequently broken, difficult to
find a transmitter in an appropriate direction

» Advantages: light, fast and easy to use s



VFL-tilt measurements
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VFL-tilt measurements
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Very-Low Frequency (VLF-R)

o Gives apparent resistivity of the ground and phase shift by
measuring H and E

« Various local radio waves can be used to chose a depth of
Investigation (frequency can be chosen)
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VLF-R measurements

remote transmitter
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Controlled source AMT (CSAMT)

o Similar to MT but using a remote (2 to 8 km) electrical
dipole as source (1 Hz to 10 kHz)

« The source frequency and location is known
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CSAMT measurements
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Dipole-source methods

o Measurements tolls called twin-coil or slingram systems

 Txand Rx are coils (about 1m diameter) linked by a cable
which carries a reference signal in order to compensate the
effect of the primary field. By this means, the system
subsequently responds only to the secondary fields

o A decomposer spilt the secondary field into real and
Imaginary components (display the result as a percentage
of the primary field)
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EM31 (Geonics), 9.8 kHz, s=3.66 m

EM34 (Geonics), 6.4 kHz for s=10 m
1.6 kHz for s=20 m
0.4 kHz for s=40 m

EM38 (Geonics), 14.6 kHz, s=1 m

s: Rx-Tx distance



Anomaly

Primary and secondary fields
have the same direction

Secondary field horizontal
efprs no horizontal-coil induction
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Primary field in plane of conductor
no secondary currents
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EM at low induction numbers (LIN)

« Depth of investigation depends on the distance Tx-RX
e The response Is proportional to ground conductivity

* Manufacturer adapts the Rx-Tx distance (s) and frequency
(f) for a LIN approximation, I.e. s<<¢:

H, 4
H, iu,wos®
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CST and VES using LIN

e CST: moving vertical and horizontal dipoles with various
constant depth (survey principle similar to resistivity CST
and tomography)

* VES: increasing Tx-Rx spacing around a same location
point and using vertical and horizontal dipoles (survey
principle similar to resistivity VES)
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Transient EM (TEM)

 TEM uses a primary field which is not continuous but
consists of a series of pulses separated by measurement
periods when the transmitter is inactive

* Primary and secondary fields are clearly separated

 Investigation depth up to several km could be achieved,
but difficult to use in shallow geophysics (no reliable
Information in the 0-10 m depth range)
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TEM measurements
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TEM measurements
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Transient decay curve over
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Remarks on Interpretation

Indirect approach using theoretical computations of simple
geometry shapes (spheres, cylinders, thin sheets, horizontal

layers)
Laboratory modeling (using special scaling rules)
Use of master curves for simple Earth structures

Mainly qualitative. Quantitative inversion in development,
soundings very used
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3. Conclusions
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Advantages

Surveys are easy to carry out, non-expensive (require less
field operators than resistivity methods)

Rapid qualitative overview
No galvanic coupling with the ground required

Theoretically less sensitive to non-unicity in the solution
than resistivity
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Drawbacks

« Quantitative interpretation of EM anomalies is complex

« Penetration not very great if very conductive superficial
layers are present
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